DFC BC / DFC BCF / DFC MD
フレキシブルビート検出ユニット
2種類のフレキシブルなモジュールで構成されるトプティカのビート検出ユニット:DFC BC (或いは DFC BCF)及びDFC MD.ビーム結合とビーム検出を2つのユニットに分けることにより、異なる配置が可能になります。
DFC BCとDFC MDは、とりわけDFCとトプティカのDL proチューナブルダイオードレーザーシリーズとの組み合わせ様にデザインされていますが、その他のCWレーザーで使用することも可能です。
-
Specification
DFC BC DFC BCF DFC MD Inputs 1. Frequency Comb: fiber-coupled (FC/APC, fiber for comb-light input included)
2. cw laser: fiber-coupled (FC/APC)1. Frequency Comb: fiber-coupled (FC/APC, fiber for comb-light input included)
2. cw laser: fiber-coupled (FC/APC)Frequency comb + cw laser: fiber-coupled (fiber coupler included) Outputs 1. Frequency comb + cw laser: fiber-coupled (FC/APC, fiber for beat-light output included)
2. cw laser: free space (fiber coupling optional)1. Frequency comb + cw laser: fiber-coupled (FC/APC, fiber for beat-light output included)
2. cw laser: fiber-coupled (FC/APC)RF signal, amplified for use with mFALC Wavelength 420 nm - 2000 nm 780, 850, 935, 980, 1030, 1064, 1160, 1310, 1390, 1550 nm (others on request) 420 nm - 2000 nm Split ratio Adjustable Fixed: 90:10, 70:30, 50:50 (in %, others on request) N/A Spectral operating range approx. 50 nm (depends on center wavelength) approx. 100 nm (depends on center wavelength and split ratio) approx. 50 nm (depends on center wavelength) Filter element N/A N/A - 10 GHz bandwidth grating (other bandwidths on request)
- Optical resolution > 50.000
- Tuning via manual adjustment of µm-screw incl. scale reading
- Tuning resolution < 1 GHz (typ.)
Dimensions (HxWxD) 49 x 100 x 100 mm3 23 x 90 x 200 mm3 64 x 60 x 120 mm3 -
Options
- Modular DFC Extensions: Various extension modules are available that convert the offset-free fundamental output of the DFC CORE + from 1560 nm to any desired wavelength between 420 nm and 2000 nm
-
Applications
- Optical Clocks
- Microwave Generation
- Laser Reference
- High-resolution Spectroscopy
- Dual-comb Spectroscopy
- Direct Frequency Comb Spectroscopy
- Interferometry
- Transportable AMO Systems
- Quantum Computing
- CEP-stable Seeders
-
Literature
- Scientific Article: E. Benkler et al., End-to-end topology for fiber comb based optical frequency transfer at the 10−21 level, Optics Express [27], 36886 (2019)
- Scientific Article: E. C. Cook et al., Resonant two-photon spectroscopy of the 2s3d 1D2 level of neutral 9Be Phys. Rev. Applied 101, 042503 (2020)
- Scientific Article: M. Collombon et al., Experimental Demonstration of Three-Photon Coherent Population Trapping in an Ion Cloud, Phys. Rev. Applied 12, 034035, (2019)
- Scientific Article: M. Collombon et al., Phase transfer between three visible lasers for coherent population trapping, Optics Letters Vol. 44, Issue 4 (2019)
- Scientific Article: A. Liehl et al., Ultrabroadband out-of-loop characterization of the carrier-envelope phase noise of an offset-free Er:fiber frequency comb. Optics Letters Vol. 42, Issue 10 (2017)
- Scientific Article: T. Puppe et al., Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency, Optics Letters Vol. 41, Issue 8 (2016)
- Scientific Article: G. Krauss et al., All-passive phase locking of a compact Er:fiber laser system, Opt. Lett., 36, 540 (2011)
- Scientific Article: D. Fehrenbacher et al., Free-running performance and full control of a passively phase-stable Er:fiber frequency comb. Optica Vol. 2, Issue 10 (2015)
- Scientific Article: R. Kliese et al., Difference-frequency combs in cold atom physics, arXiv:1605.02426v1 (2016)
- Scientific Article: D. Brida et al., Ultrabroadband Er:fiber lasers, Laser & Photonics Review 8(3) (2014)
- Related Products